ACEP Railbelt Decarbonization Project Wind-Solar Scenario Addendum

nш

Addendum Authors:

ACEP Jeremy VanderMeer Steve Colt Emilia Hernandez Michelle Wilbur Mariko Shirazi Dominique Pride Other Contributors: <u>Telos Energy:</u> Isabela Anselmo Matt Richwine Derek Stenclik The analysis presented in this slide deck is an addendum to a larger project which was published in January 2024.

- The full report looks at different scenarios for a fully decarbonized Railbelt electric grid in 2024.
 - Railbelt Decarbonization Project Full Report:

https://www.uaf.edu/acep/files/media/ACEP_Railbelt_Decarbonization_Study_Final_Report.pdf

- Executive summary: https://www.uaf.edu/acep/files/media/ACEP_Railbelt_Decarbonization_Study_Final_Report_ExecutiveSummary.pdf
- Each scenario featured a large amount of Wind and Solar alongside an emerging carbon-free technology or project that has been proposed to meet a large share of demand (Nuclear, Tidal, and Hydroelectric).
- Our analysis looked at costs associated with building and operating these future systems alongside an estimate for costs associated with electrical stability.

New Wind/Solar Scenario

This scenario used the same input assumptions as the other low carbon scenarios, except no new non-wind or non-solar source of power.

Business

Low-Carbon vs. BAU: Much lower fossil generation

Wind/Solar vs. Other Low-Carbon Scenarios More fossil generation than W/S/Hydro and W/S/Nuclear

On a normal day, there is

There are extended periods with significantly less synchronous generation, up to 100% inverter

Wind/Solar/Hydro

Wind/Solar/Nuclear

Annual Wind and Solar Generation Share Distribution

- Low-Carbon Scenarios have periods with very high and very low wind and solar generation
- Wind/Solar spends much more time at high wind and high solar

Intertie Use

AK Intertie: increase in use Kenai Intertie: increase in use compared to W/S/Hydro and W/S/Nuclear

100 C 4 15 FT RT 67.74

N. 41.12. 18. 4. 18

Golden Valley Electric

Matanuska Elest

Matanuska-Susitna

Grid Operations

- The most challenging hours for stability have changed
- The highest flows on the interties have changed, particularly the Kenai intertie flow direction

Additional Contingency

• An additional contingency was evaluated because it was more severe due to higher North South flows on the interties

24. 21. 21.

• This contingency was not analyzed for any other scenario

Inverter based resources (IBR) in the Wind & Solar Scenario

- More dominated by IBR than the previously studied scenarios
- There are thousands of hours with a 100% IBR Railbelt!

Implications

 Historically, synchronous machines have provided critical stab@MC/0.0088028C>]@MC/0.0088028C>]@(e)-15(dW* nBT1)5(c)21(a)

SP-ass-Properties Trees. Infernmention.

1.73%

Intertie Flows in the W/S Scenario

• Periods of increased southern flow

.

Mitigation Options: Equipment v. Operations

Contingency	Violation	Equipment Mitigation	Operational Mitigation
Loss of the 138kV			

Lessons Learned From the Other Scenarios

Loss of the AK Intertie for Hour 7763, GFL with SC Addition

Loss of the AK Intertie for Hour 7763, GFM Included

GFM Batteries: Location & Size

Required Capital Investment

720

Base Case Generation & Transmission Cost of Service

Costs are all in the same ballpark range

Recap of Sensitivity Cases

<u>S1: High Fuel</u> Fuel costs are 20% higher

<u>S2: High interest</u> Debt interest rate is 6% (vs 5%)

<u>S3: High-Cost Renewables</u> Hydro, Tidal, Nuclear CAPEX is 20%&G997(hii)3(g)e5(hra)32(r)%(,)14()-7(i)5(nt)CID 80 405 14tet rats

S4: Low-cost renewables

The Wind/Solar scenario (W/S) focuses solely on new wind and solar sources of generation and was developed in response to feedback W/S achieves 77% fossil-free generation, less than W/S/Hydro and W/S/Nuclear Much higher levels of inverter-based generation and North-South intertie flows

result in more hours with stability challenges compared to the other low carbon

Contact Information: Gwen Holdmann (<u>gwen.holdmann@alaska.edu</u>) Jeremy VanderMeer (<u>jbvandermeer@alaska.edu</u>) Steve Colt (<u>sgcolt@alaska.edu</u>) Telos Energy (<u>info@telos.energy</u>)

For more information, see our project website